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a b s t r a c t

A theoretical formalism is used to study Ti2GeC the compressibility, anisotropy and thermodynamic
properties under pressure. The bulk moduli along the a and c axes, Ba and Bc, almost linearly increase with
pressure, and the former is always smaller than the latter. The value of Bc/Ba has a trend of gradual increase
as the pressure increases. It is found that the elastic constants, anisotropies and Debye temperature of
Ti2GeC increase monotonically with pressure. The thermal properties including the equation of state,
hermal expansion coefficient ˛, the Grüneisen parameter � , the anisotropies �p, �S1 and �S2, at various
pressures and temperatures are estimated.
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. Introduction

The MAX compounds exhibit the favorable properties of ceram-
cs and metals [1–8] where M is an early transition element, A is an
-group element (mostly IIIA and IVA element) and X is either C or
. This family of these compounds exhibit hexagonal crystal sym-
etry, with the general chemical formula Mn+1AXn, where n varies

rom 1 to 3. Based on the value of n, this class of materials can be
urther classified as M2AX or 211MAX compounds (n = 1), M3AX2
r 312 MAX compounds (n = 2) and M4AX3 or 413 MAX compounds
n = 3). More than 50 compounds of the so-called M2AX phases are
eported. These compounds are layered with two formula units per
nit cell. With the hexagonal structure, Ti2GeC shows a large c/a
atio because the unit cell is very large in c axis as compared to a
xis, almost three times. The atoms therefore have more freedom

o move and rearrange in c direction than in a direction. Moreover,
he symmetry restrictions allow only the z co-ordinate of Ti to be
t general position.
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Recently, Phatak et al. reported on the synthesis and compress-
ibility of Ti2GeC, Ti2AlC and Ti2SC [9]. Ti2AlC has been widely
studied owing to one of the lowest density among all the 211 MAX
compounds so far [10,11]. More recently Ti2SC has been synthe-
sized [12] and its high-pressure behavior [13] has been reported.

From above, it is clear that some fundamental properties of
Ti2GeC have been not investigated compared to the other mem-
bers of this family. Few experimental and theoretical works have
been done to investigate their properties. In this paper we study
Ti2GeC compressibility, anisotropy and thermodynamic properties
under higher pressure. These properties are important not only
because they are closely related to various fundamental solid-state
phenomena such as interatomic bonding, equations of state, and
phonon spectra, but also they link thermodynamically with the spe-
cific heat, thermal expansion, Debye temperature, melting point,
and Grüneisen parameter. The effects of pressure are considered
here because they have already displayed much marvellous physics
phenomenon recently [14]. The motivations are to study the elastic
and thermal behavior of Ti2GeC and to investigate if it exhibits any
unusual behavior under high pressure.
2. Computational details

All calculations are performed based on the plane-wave pseu-
dopotential density function theory (DFT) [15,16]. Vanderbilt-type

dx.doi.org/10.1016/j.jallcom.2010.06.186
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:fhzscdx@163.com
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H. Fu et al. / Journal of Alloys and Compounds 506 (2010) 22–26 23

Table 1
Unit cell parameters, molar volume and their relative lattice parameters at different
pressures for Ti2GeC.

Pressure (GPa) a (Å) c (Å) V (Å3) a/a0 c/c0 V/V0

Present
0 3.101 13.159 109.61 1 1 1
5 3.065 13.024 106.02 0.988 0.989 0.967

10 3.035 12.909 103.00 0.978 0.980 0.939
15 3.008 12.813 100.46 0.970 0.973 0.916
20 2.984 12.720 98.13 0.962 0.966 0.895
25 2.962 12.633 96.03 0.955 0.959 0.876
30 2.942 12.561 94.17 0.948 0.954 0.859
35 2.923 12.490 92.47 0.942 0.949 0.843
40 2.906 12.427 90.94 0.937 0.944 0.829
45 2.890 12.367 89.46 0.931 0.939 0.816
50 2.874 12.314 88.11 0.926 0.935 0.803
55 2.859 12.262 86.86 0.922 0.931 0.792
60 2.845 12.215 85.67 0.917 0.928 0.781
65 2.812 12.117 83.01 0.906 0.9208 0.757
70 2.800 12.078 82.01 0.902 0.917 0.748
Experiment [9]

0 3.078 12.934 106.13 1.000 1.000 1.000
1.35 3.073 12.896 105.48 0.998 0.997 0.994
3.35 3.066 12.856 104.64 0.996 0.994 0.986
4.19 3.061 12.843 104.22 0.994 0.993 0.982
5.72 3.056 12.799 103.53 0.993 0.990 0.975
8.12 3.048 12.761 102.65 0.990 0.987 0.967

11.29 3.032 12.680 100.96 0.985 0.980 0.951
12.45 3.027 12.636 100.23 0.983 0.977 0.944
17.02 3.014 12.571 98.91 0.979 0.972 0.932
22.97 2.994 12.494 96.97 0.973 0.966 0.914
30.04 2.976 12.379 94.92 0.967 0.957 0.894
32.26 2.966 12.359 94.16 0.964 0.956 0.887

u
t
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t
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i
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t
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w
X
t
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C

ijkl
39.73 2.945 12.239 91.93 0.957 0.946 0.866
41.76 2.941 12.230 91.62 0.955 0.946 0.863
49.47 2.922 12.135 89.71 0.949 0.938 0.845

ltrasoft pseudopotentials (USPP) [17] are employed to describe
he electron–ion interactions. The effects of exchange correlation
nteraction are treated with the generalized gradient approxima-
ion (GGA) of Perdew–Burke–Eruzerhof (PBE) [18]. In the structure
alculation, a plane-wave basis set with energy cut-off 350.00 eV
s used. Pseudo-atomic calculations are performed for Ti3d24s2,
e4s24p2 and C2s22p2. For the Brillouin-zone sampling, we adopt

he 9 × 9 × 2 Monkhorst–Pack mesh [19], where the self-consistent
onvergence of the total energy is at 10−7 eV/atom and the maxi-
um force on the atom is blow 10−5 eV/Å.

. Results and discussions

The equilibrium lattice constant a, c, volume V and their ratios
re listed in Table 1 with experiment results. It can found that our
alculated values are consistent with the experiment data [9] at
ifferent pressures. For Ti2GeC, there are five independent elas-
ic constants, i.e., C11, C12, C13, C33 and C44. The complete elastic
onstant tensor was determined from calculations of the stresses
nduced by small deformations of the equilibrium primitive cell,
nd thus the elastic constants Cijkl are determined as [20]

ijkl =
(

∂�ij(x)
∂ekl

)
X

(1)

here �ij and ekl are applied stress and Eulerian strain tensors, and
and x are the coordinates before and after the deformation. For

he isotropic stress, the elastic constants are defined as [21]
ijkl = Cijkl + P

2
(2ıijıkl − ıilıjk − ıikıjl) (2)

ijkl =
(

1
V(x)

∂2E(x)
∂eijekl

)
X

(3)
Fig. 1. The elastic constants Cij of Ti2GeC as a function of pressure, neglecting zero-
point vibrational effects.

where Cijkl are the second-order derivatives with respect to the
infinitesimal strain.

Fig. 1 shows the elastic constants Cij variation versus pressure
(up to 60 GPa). We found that the five independent elastic constants
increase monotonically with pressure. C33 and C12 vary rapidly as
pressure increases, followed by C13, C11 and C44. Unfortunately,
there are no experimental and theoretical data to compare our
elastic constants under pressure. If this structure is stable, the five
independent elastic constants should satisfy the well-known Born
stability criteria [22], i.e.

C12 > 0, C33 > 0, C66 = (C11 − C12)/2 > 0, C44 > 0, (4)

and

(C11 + C12)C33 − 2C2
13 > 0. (5)

This suggests that the Ti2GeC is mechanically stable and pre-
dicts that there is not a transition phase when the pressure is under
60 GPa.

The mechanical anisotropy of Ti2GeC can be calculated using the
bulk moduli along the a and c axes, Ba and Bc, respectively [23],

Ba = a
dP

da
= �

2 + ˛
(6)

Bc = c
dP

dc
= Ba

˛
, (7)

� = 2(C11 + C12) + 4C13˛ + C33˛2, (8)

˛ = C11 + C12 − 2C13

C33 − C13
(9)

The calculated Ba and Bc with pressure are presented in Fig. 2. It
can be seen that Ba and Bc almost linearly increase with pressure,
and the former is always smaller than the latter. It is interesting that
the value of Bc/Ba has a trend of gradual increase as the pressure
increases. This may show that the mechanical behavior of Ti2GeC
under pressure is of anisotropy.

It is known that the acoustic velocities are obtained from elastic
constants by the Christoffel equation [24]

(Cijklnjnk − Mıil)�i = 0 (10)

where M = �v2, C is the fourth rank tensor description of the

elastic constants, n is the propagation direction, and � is the polar-
ization vector; the acoustic anisotropy is defined as [25]

�i = Mi[nx]
Mi[100]

(11)
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ig. 2. Variation of the bulk modulus Ba and Bc along the a- and c-axes with pressure.

here nx is the extremal propagation direction and i is the index
f three types of elastic waves (one longitudinal and two traversal
olarizations of shear waves). By solving the Christoffel equation
11) for hexagonal Ti2GeC, the anisotropy of the compression wave
s obtained from [26]

p = V2
l

(00)

V2
l

(900)
= C33

C11
(12)

The anisotropies of the wave polarized perpendicular to the
asal plane (S1) and to the basal plane (S2) are calculated [26]

S1 = C11 + C33 − 2C13

4C44
, �S2 = V2

t (00)

V2
t (900)

= 2C44

C11 − C12
(13)

here �p shows the anisotropy of the compression wave, �S1
nd �S2 denote the shear waves, V(900) and V(00) are the
n-plane and c-axis ultrasound velocities, respectively. For an elas-
ically isotropic solid, �p = �S1 = �S2 = 1. The elastic anisotropy
actors of Ti2GeC are �p = 1.05, �S1 = 0.8 and �S2 = 1.19. This small
nisotropy indicates that the in-plane and out-of-plane interatomic

nteractions in Ti2GeC differ slightly. Fig. 3 shows the pressure
ependences of the elastic anisotropy factors for Ti2GeC in the
ange 0–60 GPa. It is noted that �S2 increases rapidly and �p

lightly with increasing pressure. However, �S1 decreases with
ressure (due to the fact that the elastic constants C11 and C33

ig. 3. Temperature dependences of the longitudinal and transverse elastic
nisotropy factors for Ti2GeC single crystals.
Fig. 4. Pressure dependence of the bulk modulus and a and c axis compressibilities
of Ti2GeC.

are affected by pressure). These are due to the anharmonicity of
acoustic vibrations.

Isothermal compressibility measurements provide information
about the nature of chemical bonding in crystals and make it possi-
ble to evaluate the Debye characteristic temperature, the difference
between the heat capacities at constant pressure and volume, and
other thermal parameters. The compressibility of semiconductors
is difficult to determine by direct measurements and is commonly
evaluated from elastic constants. The expression for compressibil-
ity ˇ for the hexagonal and rhombohedral systems can be written
in matrix notation as [27]

ˇ = (S11 + S12 + S13) − (S11 + S12 − S13 − S33)l2 (14)

where l is the direction cosine with the c axis (l2 = 0 for ⊥c axis; l2 = 1
for ||c axis), Sij the elastic-compliance-constant. Thus, the linear
compressibility in the uniaxial materials is rotationally symmetri-
cal about the unique axis c. The pressure dependence of the lattice
parameter is also related to a combination of elastic constants Cij,
and thus we can make use of the linear compressibility ˇ to check
the validity of the calculated Sij. In hexagonal crystal, the axial com-
pressibilities ˇa and ˇc are of the form [28,29]

ˇa = −d ln a/dP = C33 − C13

˝
, ˇc = −d ln c/dP = C11 + C12 − 2C13

˝
(15)

where ˝ = (C11 + C12)C33 − 2C2
13

Here the ˇa and ˇc are of the linear compressibility. The volume
compressibility of hexagonal layered crystals is ˇ = ˇc + 2ˇa, where
ˇc and ˇa are the c-axis and in-plane isothermal compressibilities,
respectively. On the other hand, we can determine ˇa and ˇc by
fitting a polynomial to the evolution of ln a and ln c at various pres-
sures. The pressure effects on the axial compressibilities ˇa and ˇc

are shown in Fig. 4. Our calculated ˇa and ˇc are equal to 0.0023 and
0.002 TPa−1, respectively. As expected, compressibilities along the
a and c axis decrease linearly with pressure while the bulk modulus
increases, which accords with experiment [9].

The anisotropy of the crystal is measured by A− and A+ coeffi-
cient calculated for every symmetry plane and axis. These factors

are derived from elastic constants by the following simple relation-
ships [30]:

A[0 0 1]
− = C44(C11 + 2C13 + C33)

C11C33 − C2
13

(16)
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Table 2
Anisotropy factors A− , A+ for, respectively, symmetry plane (i j k) and [i j k] symmetry
axis with symmetry plane (i j k) as a function of pressure.

Pressure (GPa) A−[0 0 1] A+
[1 0 0],(0 1 0) A+

[0 0 1],(0 1 0)

0 1.2516 −16.13333 1.20398
5 1.26873 −15 1.21622

10 1.27944 −14.7 1.225
15 1.36901 −12.46154 1.296
20 1.41459 −10.54545 1.32319
25 1.48286 −7.15385 1.33813
30 1.52804 −7.14286 1.37457
35 1.54587 −6.33333 1.37049
40 1.58008 −6.50746 1.40193
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× 10−11T4 + 2.91944 × 10−15T5 − 3.33345 × 10−19T6 P = 10 GPa
˛(T) = 0.00639T − 1.33826 × 10−5T2 + 1.38772 × 10−8T3 − 7.42032
× 10−11T4 + 1.92761 × 10−15T5 − 1.866 × 10−19T6 P = 15 GPa
45 1.6212 −6.30137 1.42857
50 1.6495 −5.69048 1.43114
55 1.70153 −5.51648 1.46356
60 1.71826 −5.93182 1.49143

[1 0 0],(0 1 0)
+ = 2C44

C11 − C33
(17)

[0 0 1],(0 1 0)
+ = 2C44

C33 − C13
(18)

he [i j k] and (i j k) denote symmetry axis and plane, respectively.
nisotropy factors are easy to calculate and provide important in-
lane phonon-focusing information. The three anisotropy factors
rovide the most useful information for hexagonal crystals. Positive
alues of A+ less than unity indicate in-plane focusing, whereas
alues greater than unity indicate in-plane defocusing about the
rincipal axis. For the rare case A+ is negative. In-plane cuspidal
eatures can be inferred from the values of A−. Cuspidal features
bout a principal axis require A− to be somewhat greater than unity
31]. The calculated anisotropy factors are presented in Table 2. One
an note that Ti2GeC shows anisotropy which coincides with the
esults of Scabarozi et al. [32]. And the anisotropy factors increase
ith pressure.

For Ti2GeC crystal, the Debye temperature can be estimated
rom the average sound velocity Vm, using the following equation
33]

= h

kB

(
3nNA�

4
M

)1/3
Vm (19)

here h is Planck’s constant, kB is Boltzmann’s constant, NA is Avo-
adro’s number, M is the molecule mass, � is the density, and the
verage sound velocity Vm is approximately given by [34]

m =
[

1
3

(
2

V3
s

+ 1

V3
P

)]−(1/3)

(20)

here Vp and Vs are the longitudinal and transverse elastic wave
elocities, respectively, which can be obtained from Navier’s equa-
ion [35]

p =
√(

BS + 4
3

G
)

/�, Vs =
√

G

�
(21)

here G is the shear modulus and BS is the adiabatic bulk modulus.
The calculated values of 	p/	0 are plotted in Fig. 5, where 	0

s the Debye temperature at zero pressure, 	p at pressure P. For
i2GeC, 	p/	0 > 1, not like rubidium halides (	p/	0 < 1) [36]. There is
ualitative agreement with the relation:

p = [1 + (�ˇ)P]	0, (22)

here � is the Gruneisen constant and ˇ the compressibility.

Fig. 6 shows the pressure dependence of the longitudinal wave

Vl) and transverse wave (Vt) velocities of Ti2GeC. The Vl is always
igger than Vt, and they almost linearly increase with pressure. In
his study the Vl at 0 GPa are 9.83 km/s and Vt 6.95 km/s, respec-
ively. When the pressure reaches 60 GPa, Vl and Vt read 13.33 and
Fig. 5. 	p/	0 obtained as a function of pressure P.

10.32 km/s, respectively. This shows that a slight wave velocities
variation appears. We attribute this mostly to the changes in the
shear modulus G and the bulk modulus B with pressure.

The thermal expansion coefficient ˛ [37,38] is thought to be
described the alteration in a frequency of the crystal lattice vibra-
tion based on the lattice’s increase or decrease in volume as the
temperature changes. It is directly related to the equation of state
(EOS). We have determined the pressure dependence of the thermal
expansion and that the results are shown in Fig. 7. It can be observed
that the ˛ increases monotonously when T > 500 K (as shown in
Fig. 7a); while at fixed temperature, the ˛ decreases dramatically
with pressure (Fig. 7b). We can get the temperature dependence of
thermal expansion coefficient ˛ (10−5 K−1) at different pressure.

˛(T) = 0.01031T − 2.42003 × 10−5T2 + 2.92178 × 10−8T3 − 1.87072
× 10−11T4 + 6.08887 × 10−15T5 − 7.91511 × 10−19T6 P = 0 GPa
˛(T) = 0.00836T − 1.90242 × 10−5T2 + 2.21221 × 10−8T3 − 1.36309
× 10−11T4 + 4.25162 × 10−15T5 − 5.27725 × 10−19T6 P = 5 GPa
˛(T) = 0.00718T − 1.57093 × 10−5T2 + 1.73222 × 10−8T3 − 1.00459
Fig. 6. The pressure dependence of longitudinal wave and transverse wave veloci-
ties of Ti2GeC.
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Fig. 7. Variation of the thermal expansion ˛ with (a) temperature T and (b) pressure
P.
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Fig. 8. Variation of the thermal expansion coefficient ˛ with pressure P.

The dependence of the Grüneisen parameter � [39] with pres-
ure P are shown in Fig. 8. The effects of the pressure P on the
rüneisen parameter � are obtained. However, it is noted that as

he pressure increases, � almost increases lineally. This means that
here is a bigger thermal expansion at low pressure. The following
elations are obtained, respectively.

�(T) = 1.68338 + 4.60174 × 10−5T + 3.42574 × 10−8T2 P = 0 GPa
�(T) = 1.55458 + 3.2423 × 10−5T + 1.317 × 10−8T2 P = 5 GPa
�(T) = 1.49167 + 1.3974 × 10−5T + 6.90576 × 10−9T2 P = 10 GPa
�(T) = 1.4636 + 3.46025 × 10−5T + 3.86567 × 10−9T2 P = 15 GPa

. Conclusions

We have investigated the pressure-dependent elastic

nisotropy, static compressibility and lattice dynamical properties
f ternary alloy Ti2GeC within the plane-wave pseudopotential
ensity functional theory within the generalized gradient approx-

mation method. The calculated lattice constants are in agreement
ith the experimental data. We have obtained the pressure

[

[
[
[
[

mpounds 506 (2010) 22–26

dependence of thermal expansion coefficient ˛ and Grüneisen
parameter �(T). From the elastic constants, the bulk moduli
along the crystallographic axes are calculated. It is found that its
compressibility ˇ and thermal expansion coefficient ˛ decrease
when increasing pressure; while the anisotropy factor, the c-axis
and in-plane bulk moduli, Debye temperature, longitudinal wave
and transverse wave velocities increase with pressure. The results
are interpreted in terms of the anharmonicity of lattice vibrations,
and the atomic bonding along the c-axis is stronger than that along
the a-axis.
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